3.2.68 \(\int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx\) [168]

Optimal. Leaf size=78 \[ \frac {\tanh ^{-1}(\sin (c+d x)) \sqrt {\sec (c+d x)}}{2 b d \sqrt {b \sec (c+d x)}}+\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 b d \sqrt {b \sec (c+d x)}} \]

[Out]

1/2*sec(d*x+c)^(5/2)*sin(d*x+c)/b/d/(b*sec(d*x+c))^(1/2)+1/2*arctanh(sin(d*x+c))*sec(d*x+c)^(1/2)/b/d/(b*sec(d
*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {17, 3853, 3855} \begin {gather*} \frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{2 b d \sqrt {b \sec (c+d x)}}+\frac {\sqrt {\sec (c+d x)} \tanh ^{-1}(\sin (c+d x))}{2 b d \sqrt {b \sec (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^(9/2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

(ArcTanh[Sin[c + d*x]]*Sqrt[Sec[c + d*x]])/(2*b*d*Sqrt[b*Sec[c + d*x]]) + (Sec[c + d*x]^(5/2)*Sin[c + d*x])/(2
*b*d*Sqrt[b*Sec[c + d*x]])

Rule 17

Int[(u_.)*((a_.)*(v_))^(m_)*((b_.)*(v_))^(n_), x_Symbol] :> Dist[a^(m + 1/2)*b^(n - 1/2)*(Sqrt[b*v]/Sqrt[a*v])
, Int[u*v^(m + n), x], x] /; FreeQ[{a, b, m}, x] &&  !IntegerQ[m] && IGtQ[n + 1/2, 0] && IntegerQ[m + n]

Rule 3853

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Csc[c + d*x])^(n - 1)/(d*(n
- 1))), x] + Dist[b^2*((n - 2)/(n - 1)), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n,
 1] && IntegerQ[2*n]

Rule 3855

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin {align*} \int \frac {\sec ^{\frac {9}{2}}(c+d x)}{(b \sec (c+d x))^{3/2}} \, dx &=\frac {\sqrt {\sec (c+d x)} \int \sec ^3(c+d x) \, dx}{b \sqrt {b \sec (c+d x)}}\\ &=\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 b d \sqrt {b \sec (c+d x)}}+\frac {\sqrt {\sec (c+d x)} \int \sec (c+d x) \, dx}{2 b \sqrt {b \sec (c+d x)}}\\ &=\frac {\tanh ^{-1}(\sin (c+d x)) \sqrt {\sec (c+d x)}}{2 b d \sqrt {b \sec (c+d x)}}+\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{2 b d \sqrt {b \sec (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.07, size = 50, normalized size = 0.64 \begin {gather*} \frac {\sec ^{\frac {3}{2}}(c+d x) \left (\tanh ^{-1}(\sin (c+d x))+\sec (c+d x) \tan (c+d x)\right )}{2 d (b \sec (c+d x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^(9/2)/(b*Sec[c + d*x])^(3/2),x]

[Out]

(Sec[c + d*x]^(3/2)*(ArcTanh[Sin[c + d*x]] + Sec[c + d*x]*Tan[c + d*x]))/(2*d*(b*Sec[c + d*x])^(3/2))

________________________________________________________________________________________

Maple [A]
time = 34.30, size = 114, normalized size = 1.46

method result size
default \(-\frac {\left (\ln \left (-\frac {\cos \left (d x +c \right )-1+\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right )-\ln \left (-\frac {\cos \left (d x +c \right )-1-\sin \left (d x +c \right )}{\sin \left (d x +c \right )}\right ) \left (\cos ^{2}\left (d x +c \right )\right )-\sin \left (d x +c \right )\right ) \left (\frac {1}{\cos \left (d x +c \right )}\right )^{\frac {9}{2}} \cos \left (d x +c \right )}{2 d \left (\frac {b}{\cos \left (d x +c \right )}\right )^{\frac {3}{2}}}\) \(114\)
risch \(-\frac {i \sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \left ({\mathrm e}^{3 i \left (d x +c \right )}-{\mathrm e}^{i \left (d x +c \right )}\right )}{b \sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, d \left ({\mathrm e}^{2 i \left (d x +c \right )}+1\right )^{2}}-\frac {\sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )}{2 b \sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, d}+\frac {\sqrt {\frac {{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, \ln \left ({\mathrm e}^{i \left (d x +c \right )}+i\right )}{2 b \sqrt {\frac {b \,{\mathrm e}^{i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}\, d}\) \(240\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^(9/2)/(b*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

-1/2/d*(cos(d*x+c)^2*ln(-(cos(d*x+c)-1+sin(d*x+c))/sin(d*x+c))-cos(d*x+c)^2*ln(-(cos(d*x+c)-1-sin(d*x+c))/sin(
d*x+c))-sin(d*x+c))*(1/cos(d*x+c))^(9/2)*cos(d*x+c)/(b/cos(d*x+c))^(3/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 670 vs. \(2 (66) = 132\).
time = 0.64, size = 670, normalized size = 8.59 \begin {gather*} -\frac {4 \, {\left (\sin \left (4 \, d x + 4 \, c\right ) + 2 \, \sin \left (2 \, d x + 2 \, c\right )\right )} \cos \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) - 4 \, {\left (\sin \left (4 \, d x + 4 \, c\right ) + 2 \, \sin \left (2 \, d x + 2 \, c\right )\right )} \cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) - {\left (2 \, {\left (2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \cos \left (4 \, d x + 4 \, c\right ) + \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, \sin \left (2 \, d x + 2 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 1\right ) + {\left (2 \, {\left (2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \cos \left (4 \, d x + 4 \, c\right ) + \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right )^{2} + \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, \sin \left (2 \, d x + 2 \, c\right )^{2} + 4 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \log \left (\cos \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} + \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )^{2} - 2 \, \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 1\right ) - 4 \, {\left (\cos \left (4 \, d x + 4 \, c\right ) + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \sin \left (\frac {3}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right ) + 4 \, {\left (\cos \left (4 \, d x + 4 \, c\right ) + 2 \, \cos \left (2 \, d x + 2 \, c\right ) + 1\right )} \sin \left (\frac {1}{2} \, \arctan \left (\sin \left (2 \, d x + 2 \, c\right ), \cos \left (2 \, d x + 2 \, c\right )\right )\right )}{4 \, {\left (b \cos \left (4 \, d x + 4 \, c\right )^{2} + 4 \, b \cos \left (2 \, d x + 2 \, c\right )^{2} + b \sin \left (4 \, d x + 4 \, c\right )^{2} + 4 \, b \sin \left (4 \, d x + 4 \, c\right ) \sin \left (2 \, d x + 2 \, c\right ) + 4 \, b \sin \left (2 \, d x + 2 \, c\right )^{2} + 2 \, {\left (2 \, b \cos \left (2 \, d x + 2 \, c\right ) + b\right )} \cos \left (4 \, d x + 4 \, c\right ) + 4 \, b \cos \left (2 \, d x + 2 \, c\right ) + b\right )} \sqrt {b} d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)/(b*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/4*(4*(sin(4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 4*(sin(
4*d*x + 4*c) + 2*sin(2*d*x + 2*c))*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - (2*(2*cos(2*d*x + 2*
c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)
*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) + 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2
*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*sin(1/2*arctan2(sin(2*d*x + 2*c),
 cos(2*d*x + 2*c))) + 1) + (2*(2*cos(2*d*x + 2*c) + 1)*cos(4*d*x + 4*c) + cos(4*d*x + 4*c)^2 + 4*cos(2*d*x + 2
*c)^2 + sin(4*d*x + 4*c)^2 + 4*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*sin(2*d*x + 2*c)^2 + 4*cos(2*d*x + 2*c) +
 1)*log(cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +
 2*c)))^2 - 2*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 1) - 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x +
2*c) + 1)*sin(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 4*(cos(4*d*x + 4*c) + 2*cos(2*d*x + 2*c) + 1)
*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))/((b*cos(4*d*x + 4*c)^2 + 4*b*cos(2*d*x + 2*c)^2 + b*sin
(4*d*x + 4*c)^2 + 4*b*sin(4*d*x + 4*c)*sin(2*d*x + 2*c) + 4*b*sin(2*d*x + 2*c)^2 + 2*(2*b*cos(2*d*x + 2*c) + b
)*cos(4*d*x + 4*c) + 4*b*cos(2*d*x + 2*c) + b)*sqrt(b)*d)

________________________________________________________________________________________

Fricas [A]
time = 3.61, size = 205, normalized size = 2.63 \begin {gather*} \left [\frac {\sqrt {b} \cos \left (d x + c\right ) \log \left (-\frac {b \cos \left (d x + c\right )^{2} - 2 \, \sqrt {b} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, b}{\cos \left (d x + c\right )^{2}}\right ) + \frac {2 \, \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{4 \, b^{2} d \cos \left (d x + c\right )}, -\frac {\sqrt {-b} \arctan \left (\frac {\sqrt {-b} \sqrt {\frac {b}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{b}\right ) \cos \left (d x + c\right ) - \frac {\sqrt {\frac {b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{2 \, b^{2} d \cos \left (d x + c\right )}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)/(b*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(b)*cos(d*x + c)*log(-(b*cos(d*x + c)^2 - 2*sqrt(b)*sqrt(b/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x
+ c) - 2*b)/cos(d*x + c)^2) + 2*sqrt(b/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(b^2*d*cos(d*x + c)), -1
/2*(sqrt(-b)*arctan(sqrt(-b)*sqrt(b/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/b)*cos(d*x + c) - sqrt(b/cos
(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(b^2*d*cos(d*x + c))]

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**(9/2)/(b*sec(d*x+c))**(3/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^(9/2)/(b*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate(sec(d*x + c)^(9/2)/(b*sec(d*x + c))^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{9/2}}{{\left (\frac {b}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((1/cos(c + d*x))^(9/2)/(b/cos(c + d*x))^(3/2),x)

[Out]

int((1/cos(c + d*x))^(9/2)/(b/cos(c + d*x))^(3/2), x)

________________________________________________________________________________________